本文介绍Golang中常用并发原语的一些使用踩坑点。
RWMutex 的 3 个踩坑点
1:不可复制
不能复制的原因和互斥锁一样。一旦读写锁被使用,它的字段就会记录它当前的一些状态。这个时候你去复制这把锁,就会把它的状态也给复制过来。但是,原来的锁在释放的时候,并不会修改你复制出来的这个读写锁,这就会导致复制出来的读写锁的状态不对,可能永远无法释放锁。
2:重入导致死锁
读写锁因为重入(或递归调用)导致死锁(deadlock)的情况更多。
死锁三种情况:
- 第一种情况:读写锁内部基于互斥锁实现对 writer 的并发访问,而互斥锁本身是有重入问题的,所以,writer 重入调用 Lock 的时候,就会出现死锁的现象。
- 第二种情况:我们知道,有活跃 reader 的时候,writer 会等待,如果我们在 reader 的读操作时调用 writer 的写操作(它会调用 Lock 方法),那么,这个 reader 和 writer 就会形成互相依赖的死锁状态。Reader 想等待 writer 完成后再释放锁,而 writer 需要这个 reader 释放锁之后,才能不阻塞地继续执行。这是一个读写锁常见的死锁场景。
- 第三种情况:当一个 writer 请求锁的时候,如果已经有一些活跃的 reader,它会等待这些活跃的 reader 完成,才有可能获取到锁,但是,如果之后活跃的 reader 再依赖新的 reader 的话,这些新的 reader 就会等待 writer 释放锁之后才能继续执行,这就形成了一个环形依赖: writer 依赖活跃的 reader -> 活跃的 reader 依赖新来的 reader -> 新来的 reader 依赖 writer。
1 | func main() { |
factoria 方法是一个递归计算阶乘的方法,我们用它来模拟 reader。为了更容易地制造出死锁场景,在这里加上了 sleep 的调用,延缓逻辑的执行。这个方法会调用读锁(第 27 行),在第 33 行递归地调用此方法,每次调用都会产生一次读锁的调用,所以可以不断地产生读锁的调用,而且必须等到新请求的读锁释放,这个读锁才能释放。
同时,我们使用另一个 goroutine 去调用 Lock 方法,来实现 writer,这个 writer 会等待 200 毫秒后才会调用 Lock,这样在调用 Lock 的时候,factoria 方法还在执行中不断调用 RLock。这两个 goroutine 互相持有锁并等待,谁也不会退让一步,满足了“writer 依赖活跃的 reader -> 活跃的 reader 依赖新来的 reader -> 新来的 reader 依赖 writer”的死锁条件,所以就导致了死锁的产生。
3:释放未加锁的 RWMutex
和互斥锁一样,Lock 和 Unlock 的调用总是成对出现的,RLock 和 RUnlock 的调用也必须成对出现。Lock 和 RLock 多余的调用会导致锁没有被释放,可能会出现死锁,而 Unlock 和 RUnlock 多余的调用会导致 panic。在生产环境中出现 panic 是大忌,你总不希望半夜爬起来处理生产环境程序崩溃的问题吧?所以,在使用读写锁的时候,一定要注意,不遗漏不多余。
WaitGroup的三个踩坑点
1.计数器设置为负值
WaitGroup 的计数器的值必须大于等于 0。我们在更改这个计数值的时候,WaitGroup 会先做检查,如果计数值被设置为负数,就会导致 panic。
1 | func main() { |
2.不期望的 Add 时机
在使用 WaitGroup 的时候,你一定要遵循的原则就是,等所有的 Add 方法调用之后再调用 Wait,否则就可能导致 panic 或者不期望的结果。
1 | func main() { |
2.前一个 Wait 还没结束就重用 WaitGroup
如果我们在 WaitGroup 的计数值还没有恢复到零值的时候就重用,就会导致程序 panic。
WaitGroup 虽然可以重用,但是是有一个前提的,那就是必须等到上一轮的 Wait 完成之后,才能重用 WaitGroup 执行下一轮的 Add/Wait,如果你在 Wait 还没执行完的时候就调用下一轮 Add 方法,就有可能出现 panic。
1 | func main() { |
Cond踩坑点
Wait未加锁
cond.Wait 方法的实现是,把当前调用者加入到 notify 队列之中后会释放锁(如果不释放锁,其他 Wait 的调用者就没有机会加入到 notify 队列中了),然后一直等待;等调用者被唤醒之后,又会去争抢这把锁。如果调用 Wait 之前不加锁的话,就有可能 Unlock 一个未加锁的 Locker。所以切记,调用 cond.Wait 方法之前一定要加锁。
Once的两个踩坑点
1.死锁
Do 方法仅会执行一次 f,但是如果 f 中再次调用这个 Once 的 Do 方法的话,就会导致死锁的情况出现。这还不是无限递归的情况,而是的的确确的 Lock 的递归调用导致的死锁。
1 | func main() { |
2.未实际完成初始化
如果 f 方法执行的时候 panic,或者 f 执行初始化资源的时候失败了,这个时候,Once 还是会认为初次执行已经成功了,即使再次调用 Do 方法,也不会再次执行 f。
1 | func main() { |
目前Go官方建议通过自行扩展的方式,来实现,示例:
1 | // Once 是一个扩展的sync.Once类型,提供了一个Done方法 |
sync.Pool的两个踩坑点
1.内存泄漏
1 | var buffers = sync.Pool{ |
使用buffer pool但不对buf的大小做判断。
取出来的 bytes.Buffer 在使用的时候,我们可以往这个元素中增加大量的 byte 数据,这会导致底层的 byte slice 的容量可能会变得很大。这个时候,即使 Reset 再放回到池子中,这些 byte slice 的容量不会改变,所占的空间依然很大。而且,因为 Pool 回收的机制,这些大的 Buffer 可能不被回收,而是会一直占用很大的空间,这属于内存泄漏的问题。
2.内存浪费
除了内存泄漏以外,还有一种浪费的情况,就是池子中的 buffer 都比较大,但在实际使用的时候,很多时候只需要一个小的 buffer,这也是一种浪费现象。
要做到物尽其用,尽可能不浪费的话,我们可以将 buffer 池分成几层。首先,小于 512 byte 的元素的 buffer 占一个池子;其次,小于 1K byte 大小的元素占一个池子;再次,小于 4K byte 大小的元素占一个池子。这样分成几个池子以后,就可以根据需要,到所需大小的池子中获取 buffer 了。
1 | var ( |
Channel踩坑点
panic
使用 Channel 最常见的错误是 panic 和 goroutine 泄漏。首先,我们来总结下会 panic 的情况,总共有 3 种:
- close 为 nil 的 chan。
- send 已经 close 的 chan。
- close 已经 close 的 chan。
除了这三种外,当所有goroutine处于send/recv阻塞时,也会出现死锁(deadlock)panic。
goroutine泄露
1 | func process(timeout time.Duration) bool { |
在这个例子中,process 函数会启动一个 goroutine,去处理需要长时间处理的业务,处理完之后,会发送 true 到 chan 中,目的是通知其它等待的 goroutine,可以继续处理了。
我们来看一下第 10 行到第 15 行,主 goroutine 接收到任务处理完成的通知,或者超时后就返回了。
如果发生超时,process 函数就返回了,这就会导致 unbuffered 的 chan 从来就没有被读取。
unbuffered chan 必须等 reader 和 writer 都准备好了才能交流,否则就会阻塞。超时导致未读,结果就是子 goroutine 就阻塞在第 7 行永远结束不了,进而导致 goroutine 泄漏。
解决这个 Bug 的办法很简单,就是将 unbuffered chan 改成容量为 1 的 chan,这样第 7 行就不会被阻塞了。